翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

binomial transform : ウィキペディア英語版
binomial transform
In combinatorics, the binomial transform is a sequence transformation (i.e., a transform of a sequence) that computes its forward differences. It is closely related to the Euler transform, which is the result of applying the binomial transform to the sequence associated with its ordinary generating function.
==Definition==
The binomial transform, ''T'', of a sequence, , is the sequence defined by
:s_n = \sum_^n (-1)^k a_k.
Formally, one may write (''Ta'')''n'' = ''s''''n'' for the transformation, where ''T'' is an infinite-dimensional operator with matrix elements ''T''''nk'':
:s_n = (Ta)_n = \sum_^\infty T_ a_k.
The transform is an involution, that is,
:TT = 1 \,
or, using index notation,
:\sum_^\infty T_T_ = \delta_
where \delta_ is the Kronecker delta. The original series can be regained by
:a_n=\sum_^n (-1)^k s_k.
The binomial transform of a sequence is just the ''n''th forward differences of the sequence, with odd differences carrying a negative sign, namely:
:s_0 = a_0
:s_1 = - (\triangle a)_0 = -a_1+a_0
:s_2 = (\triangle^2 a)_0 = -(-a_2+a_1)+(-a_1+a_0) = a_2-2a_1+a_0
:\vdots\,
:s_n = (-1)^n (\triangle^n a)_0
where Δ is the forward difference operator.
Some authors define the binomial transform with an extra sign, so that it is not self-inverse:
:t_n=\sum_^n (-1)^ a_k
whose inverse is
:a_n=\sum_^n t_k.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「binomial transform」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.